On the Accuracy of Runge-Kutta Methods for Unsteady Linear Wave Equation

Ge-Cheng Zha and Chakradhar Lingamgunta

Dept. of Mechanical Engineering
University of Miami
Coral Gables, Florida 33124
E-mail: zha@apollo.eng.miami.edu

Objective:

• Study the accuracy of 4-Stage Runge-Kutta Method for Unsteady CFD Calculation

Background

- \bullet Explicit 4-Stage Runge-Kutta method widely used for LES, DNS, CAA
- Unsteady Accuracy not well understood: Stability, Dissipation, Dispersion

Linear Wave Equation:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \tag{1}$$

$$\frac{du}{dt} = R(u) \tag{2}$$

where

$$R(u) = -c\frac{\partial u}{\partial x} \tag{3}$$

$$c = 1$$

Initial solution:

$$u(x,0) = \sin 2n\pi (\frac{x}{40}), \qquad 0 \le x \le 40.$$
 (4)

The analytical solution with periodic boundary conditions:

$$u(x,t) = \sin 2n\pi (\frac{x-t}{40}), \qquad 0 \le x \le 40.$$
 (5)

Runge-Kutta Methods (R-K):

Multistage R-K matches Taylor-series expansion

$$u^{n+1} = u^n + \Delta t u_t^n + \frac{(\Delta t)^2}{2} u_{tt}^n + \frac{(\Delta t)^3}{6} u_{ttt}^n + \frac{(\Delta t)^4}{24} u_{tttt}^n + \dots$$
(6)

Lax-Wendroff Scheme:

One Stage method:

$$u^{n+1} = u^n - c\Delta t u_x^n + \frac{(c\Delta t)^2}{2} u_{xx}^n$$

$$-\frac{(c\Delta t)^3}{6} u_{xxx}^n + \frac{(c\Delta t)^4}{24} u_{xxxx}^n + \dots$$
 (7)

- For 1D linear wave eq., these two methods are equivalent.
- For multi-D nonlinear Euler or N.S eqs., high order Lax-Wendroff scheme very complicated.

2-Stage R-K:

Stage 1:

$$u^{(1)} = u^n + \Delta t R^{(n)} \tag{8}$$

Stage 2:

$$u^{n+1} = u^n + \frac{\Delta t}{2} (R^{(n)} + R^{(1)})$$
 (9)

4-Stage R-K:

Stage 1:

$$u^{(1)} = u^n + \frac{\Delta t}{2} R^{(n)} \tag{10}$$

Stage 2:

$$u^{(2)} = u^n + \frac{\Delta t}{2} R^{(1)} \tag{11}$$

Stage 3:

$$u^{(3)} = u^n + \Delta t R^{(2)} \tag{12}$$

Stage 4:

$$u^{n+1} = u^n + \frac{\Delta t}{6} (R^{(n)} + 2R^{(1)} + 2R^{(2)} + R^{(3)})$$
 (13)

Schemes Studied:

1) 2nd order Lax-Wendroff Scheme (used as reference)

$$u_i^{n+1} = u_i^n - \frac{\nu}{2}(u_{i+1}^n - u_{i-1}^n) + \frac{\nu^2}{2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$$
 (14)

where ν is the CFL number expressed as:

$$\nu = \frac{c\Delta t}{\Delta x} \tag{15}$$

Stability $CFL \leq 1$,

When CFL = 1, no dissipation and dispersion,

When CFL < 1, very large dissipation and dispersion

2) 2-stage R-K, 2nd order central differencing

$$R_i^{(n)} = -c \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} \tag{16}$$

This scheme is unstable.

3) 2-stage R-K, 1st order Alternating One-Side Differencing (AOSD)

McCormack Scheme

Stage 1, Predictor:

$$R_i^{(n)} = -c \frac{u_{i+1}^n - u_i^n}{\Delta x} \quad (downwind) \tag{17}$$

Stage 2, Corrector:

$$R_i^{(1)} = -c \frac{u_i^{(1)} - u_{i-1}^{(1)}}{\Delta x} \quad (upwind)$$
 (18)

This scheme is the same as Lax-Wendroff Scheme

4) 4-stage R-K, 2nd order central differencing

Stability: $CFL \leq 2.83$

Dissipation free: $CFL \leq 1.0$

Dispersion invariant: $CFL \leq 2.0$

5) 4-stage R-K, 1st Order AOSD (2nd order spatial accuracy)

Stability: $CFL \leq 1.73$

Dissipation free: none

Dispersion invariant: none

6) 4-stage R-K, 2nd order upwind differencing

$$R_i^{(n)} = -c(\frac{3u_i^n - 4u_{i-1}^n + u_{i-2}^n}{2\Delta x})$$
 (19)

Stability: $CFL \leq 0.7$

Dissipation free: none

Dispersion and dissipation invariant: $CFL \leq 0.7$

7) 4-stage R-K, 3rd order biased upwind differencing

$$R_i^{(n)} = -c(\frac{2u_{i+1}^n + 3u_i^n - 6u_{i-1}^n + u_{i-2}^n}{6\Delta x})$$
 (20)

Stability: $CFL \leq 1.75$

Dissipation free: none

Dispersion and dissipation invariant: $CFL \leq 1.75$

8) 4-stage R-K, 4th order biased upwind differencing

$$R_i^{(n)} = -c\left(\frac{3u_{i+1}^n + 10u_i^n - 18u_{i-1}^n + 6u_{i-2}^n - u_{i-3}^n}{12\Delta x}\right)$$
(21)

Stability: $CFL \leq 1.05$

Dissipation free: none

Dispersion and dissipation invariant: $CFL \leq 1.05$

9) 4-stage R-K, 4th order central differencing

$$R_i^{(n)} = -c(\frac{-u_{i+2}^n + 8u_{i+1}^n - 8u_{i-1}^n + u_{i-2}^n}{12\Delta x})$$
 (22)

Stability: $CFL \leq 2.06$

Dissipation free: $CFL \leq 0.8$

Dispersion invariant: $CFL \leq 1.5$

For 1D linear wave eq., it is the same to represent the derivatives in the Lax-Wendroff scheme by:

$$u_x^n = \frac{-u_{i+2}^n + 8u_{i+1}^n - 8u_{i-1}^n + u_{i-2}^n}{12\Delta x}$$
 (23)

$$u_{xx}^{n} = \frac{u_{i+4}^{n} - 16u_{i+3}^{n} + 64u_{i+2}^{n} + 16u_{i+1}^{n}}{144\Delta x^{2}} + \frac{-130u_{i}^{n} + 16u_{i-1}^{n} + 64u_{i-2}^{n} - 16u_{i-3}^{n} + u_{i-4}^{n}}{144\Delta x^{2}}$$

$$(24)$$

$$u_{xxx}^{n} = \frac{-u_{i+6}^{n} + 24u_{i+5}^{n} - 192u_{i+4}^{n} + 488u_{i+3}^{n}}{1728\Delta x^{3}} + \frac{387u_{i+2}^{n} - 1584u_{i+1}^{n} + 1584u_{i-1}^{n} - 387u_{i-2}^{n}}{1728\Delta x^{3}} + \frac{-488u_{i-3}^{n} + 192u_{i-4}^{n} - 24u_{i-5}^{n} + u_{i-6}^{n}}{1728\Delta x^{3}}$$

$$(25)$$

$$u_{xxxx}^{n} = \frac{u_{i+8}^{n} - 32u_{i+7}^{n} + 384u_{i+6}^{n} - 2016u_{i+5}^{n}}{20736\Delta x^{4}} + \frac{3324u_{i+4}^{n} + 6240u_{i+3}^{n} - 16768u_{i+2}^{n} - 4192u_{i+1}^{n}}{20736\Delta x^{4}} + \frac{26118u_{i}^{n} - 4192u_{i-1}^{n} - 16768u_{i-2}^{n} + 6240u_{i-3}^{n}}{20736\Delta x^{4}} + \frac{3324u_{i-4}^{n} - 2016u_{i-5}^{n}}{20736\Delta x^{4}} + \frac{384u_{i-6}^{n} - 32u_{i-7}^{n} + u_{i-8}^{n}}{20736\Delta x^{4}}$$

$$(26)$$

2nd order Lax-Wendroff scheme

 $\begin{array}{lll} \mbox{Figure} & 2 \mbox{:} & 2 \mbox{nd} & \mbox{order} & \mbox{Lax-Wendroff} \\ \mbox{scheme} & & & \end{array}$

Figure 3: 4-Stage R-K, 2nd order central differencing

Figure 4: 4-Stage R-K, 2nd order central differencing

Figure 5: 4-Stage R-K, 4th order central differencing

Figure 6: 4-Stage R-K, 4th order central differencing

Figure 7: 4-Stage R-K, 4th order biased upwind differencing

Figure 8: 4-Stage R-K, 4th order biased upwind differencing

Figure 9: Numerical solutions of the wave equation for Lax-Wendroff scheme and 4-Stage Runge-Kutta method with 2nd order upwind differencing, t=720

Figure 10: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method with 2nd and 4th order central differencing, t=720

Figure 11: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method with 2nd and 4th order order central differencing, t=7200.

Figure 12: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method with 3rd and 4th order biased Upwind differencing, t=720.

Figure 13: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method with 3rd and 4th order biased Upwind differencing, t=720.

Figure 14: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method with 4th order central and biased upwind differencing at refined grid, t=7200

CONCLUSIONS:

- 2nd order Lax-Wendroff scheme too diffusive when CFL < 1 for unsteady calculation
- 2-stage R-K, 2nd order central differencing unstable
- 4-stage R-K, 2nd order central differencing:

stability: $CFL \leq 2.83$

dissipation free: $CFL \leq 1.0$

dispersion invariant: $CFL \leq 2.0$

• 4-stage R-K, 3rd order biased upwind differencing:

stability: $CFL \leq 1.75$

dissipation free: none

dispersion and dissipation invariant: $CFL \leq 1.75$

• 4-stage R-K, 4th order biased upwind differencing:

stability: $CFL \leq 1.05$

dissipation free: none

dispersion and dissipation invariant: $CFL \leq 1.05$

• 4-stage R-K, 2th order central differencing:

stability: $CFL \leq 2.06$

dissipation free: $CFL \leq 0.8$

dispersion invariant: $CFL \leq 1.5$

- \bullet Upwind schemes with 4-Stage R-K are less stable than central differencing
- For low frequency linear wave solutions, the 4th order biased upwind differencing and 4th order central differencing have the equivalent accuracy.