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Objective:

e Study the accuracy of 4-Stage Runge-Kutta Method
for Unsteady CFD Calculation

Background

e Explicit 4-Stage Runge-Kutta method widely used for LES,
DNS, CAA

e Unsteady Accuracy not well understood: Stability,
Dissipation, Dispersion



Linear Wave Equation:
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Initial solution:
u(z,0) = sz'n2n7r(4%), 0 <z < 40. (4)
The analytical solution with periodic boundary conditions:
—t
u(z,t) = Si’ﬂ?ﬂﬂ'(x ), 0 <z < 40. (5)
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Runge-Kutta Methods (R-K):

Multistage R-K matches Taylor-series expansion
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Lax-Wendroff Scheme:

One Stage method:
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e For 1D linear wave eq., these two methods are equivalent.

e For multi-D nonlinear Euler or N.S egs., high order Lax-
Wendroff scheme very complicated.



2-Stage R-K:

Stage 1:

Stage 2:

4-Stage R-K:

Stage 1:

Stage 2:

Stage 3:

Stage 4:
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Schemes Studied:

1) 2nd order Lax-Wendroff Scheme (used as refer-
ence)

2
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where v is the CFL number expressed as:
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Stability CFL < 1,
When CFL = 1, no dissipation and dispersion,

When C'F'L < 1, very large dissipation and dispersion



2) 2-stage R-K, 2nd order central differencing

Rz(n) _ _Cui+12;xui—1 (16)

This scheme is unstable.

3) 2-stage R-K, 1st order Alternating One-Side Dif-
ferencing (AOSD)

McCormack Scheme

Stage 1, Predictor:

R = —c% (downwind) (17)
T
Stage 2, Corrector:
) _ W
R = e A il (upwind) (18)
x

This scheme is the same as Lax-Wendroff Scheme



4) 4-stage R-K, 2nd order central differencing
Stability: C'F'L < 2.83

Dissipation free: CFL < 1.0

Dispersion invariant: C'F'L < 2.0

5) 4-stage R-K, 1st Order AOSD (2nd order spatial
accuracy)

Stability: CFL < 1.73
Dissipation free: none
Dispersion invariant: none

6) 4-stage R-K, 2nd order upwind differencing

n Ju; — 4u | + u
RV = (e ey (19)

Stability: CFL < 0.7
Dissipation free: none

Dispersion and dissipation invariant: CFL < 0.7



7) 4-stage R-K, 3rd order biased upwind
differencing

n n n n
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Stability: CFL < 1.75
Dissipation free: none
Dispersion and dissipation invariant: C'F'L < 1.75

8) 4-stage R-K, 4th order biased upwind
differencing

ugl  + 10u; — 18u’ | + 6u;’ 5 — ui 5
12Ax

R = —c( )

Stability: CFL < 1.05
Dissipation free: none

Dispersion and dissipation invariant: C'F'L < 1.05
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9) 4-stage R-K, 4th order central differencing

n n n n
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Stability: CFL < 2.06
Dissipation free: CFL < 0.8
Dispersion invariant: CFL < 1.5

For 1D linear wave eq., it is the same to represent the derivatives
in the Lax-Wendroff scheme by:
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Figure 2: 2nd order Lax-Wendroff
scheme
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Figure 3: 4-Stage R-K, 2nd order central differencing



Relative Phase Error
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Figure 4: 4-Stage R-K, 2nd order central differencing
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Figure 5: 4-Stage R-K, 4th order central differencing
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Figure 6: 4-Stage R-K, 4th order central differencing
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Figure 7. 4-Stage R-K, 4th order biased upwind differ-
encing
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Figure 8: 4-Stage R-K, 4th order biased upwind differ-
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t=720, number of grid=81
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Figure 9: Numerical solutions of the wave equation for Lax-Wendroff scheme and
4-Stage Runge-Kutta method with 2nd order upwind differencing, t=720



t=720, number of grid=81
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Figure 10: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method
with 2nd and 4th order central differencing, t=720



t=7200, number of grid=81
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Figure 11: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method
with 2nd and 4th order order central differencing, t=7200.



t=720, number of grid=81

u — —0O— — CFL=1.74,4S R-K, 3rd Order Upwind
1.5 Analytical
- —-—A—-— CFL=0.87, 4S R-K, 3rd Order Upwind
1.25 — —— — CFL=0.087, 4S R-K, 3rd Order Upwind
N O CFL=0.87, 4S R-K, 4thd Order Upwind
! - & 5 B
: B ® » > M
0.75 | Ao D &
C Oty O 75 2 . n
- F’) A AO R O "'2 O
05F£ kO 0 i \
~EHE N 7 2D ) %
4 “ s F P
025 ) x ‘, O i) R
\ b : B &
! D 4P [ A
04 A Y x5 Al ) 2
I ‘1\ A! ‘ :» p Atxi p
i A“! wD 3 p \Q ;4.
N A\
_0.25 a :" ‘l:: 0'. .
B pf B 2Pl
" A R
-0.5 R 4 R o A
ay AP 7 ;
A 2 “‘:‘\:\\,,A' “9 2 "
A e O P
-0.75 n D » ‘
O O D D
Q @ 0 A D
1 IR R ;2 I R R N R . v L Yy |
0 10 20 30 40
X

Figure 12: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method
with 3rd and 4th order biased Upwind differencing, t=720.



t=7200, number of grid=81
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Figure 13: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method
with 3rd and 4th order biased Upwind differencing, t=720.



t=7200, number of grud=161
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Figure 14: Numerical solutions of the wave equation for 4-Stage Runge-Kutta method
with 4th order central and biased upwind differencing at refined grid, t=7200



CONCLUSIONS:

e 2nd order Lax-Wendroff scheme too diffusive
when C'F'L < 1 for unsteady calculation

e 2-stage R-K, 2nd order central differencing unstable

e 4-stage R-K, 2nd order central differencing;:

stability: CFL < 2.83
dissipation free: CFL < 1.0
dispersion invariant: CFL < 2.0

e 4-stage R-K, 3rd order biased upwind differencing:

stability: CFL < 1.75
dissipation free: none
dispersion and dissipation invariant: CFL < 1.75

e 4-stage R-K, 4th order biased upwind differencing:

stability: CFL < 1.05
dissipation free: none
dispersion and dissipation invariant: CFL < 1.05



e 4-stage R-K, 2th order central differencing;:

stability: CFL < 2.06
dissipation free: CFL < 0.8
dispersion invariant: CFL < 1.5

e Upwind schemes with 4-Stage R-K are less stable than central
differencing

e For low frequency linear wave solutions, the 4th order biased
upwind differencing and 4th order central differencing have the
equivalent accuracy.



