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Objective:

e Study the boundary layer (BL) loss mechanism for internal
flows

e Examine the applicability of wall functions to predict internal
flow loss



Introduction

e Loss prediction is important for internal flows,
which is an integral across the boundary layer

e Surface force prediction is important for external flows,
which is not an integral across the boundary layer

e Entropy increase is the measure of internal flow loss
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Figure 1: The distribution of entropy creation due to shear stress work across the
boundary layer.

Denton’s theory on entropy creation:

e Total rate of entropy creation across the BL

: d s 51
Sa = %/0 (pVa(s — s5))dy = /0 TTxdex (3)

e Local rate of entropy creation within the BL

: 1 dV
)= =T 4
S TTdy (4)



Question:

e For turbulent BL, can wall function boundary conditions pre-
dict the loss correctly?

e Wall functions: based on the law of the wall
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Figure 2: A sketch of the wall function location and computational domain



With Wall Functions:

e Total rate of entropy creation:

Yy 0 l _ (Ywall function l 0 l
So = 0 TTxydvx — Jo TTwyd%+ Ywall function T Txydvx
(6)
: 5 1
Sa — / _Txyd‘/x (7)
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e Will eq.7 miss most of the entropy creation across BL?

e Answer: Yes.

e Can wall functions be used?



Boundary Layer Loss Mechanism

Turbulent BL eq. for flat plate:

Continuity equation:
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X-momentum equation:
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Y-momentum equation:

Energy equation:
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Thermodynamic relation:
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Boundary Layer Loss Mechanism

The energy eq.(local rate of entropy creation) becomes:

s . . 1 ou 0Oq
o = T, = 5,
or
s . . 1

The total rate of entropy creation

: ms 0S . 5 1 Oou Oq
— " B = [* (7, 2%~ Yy
So=l " ¥ = b g, ~ 5,
or
: mg 0S . . 51
Sa = |, 5Edm: A T(deu—dq)



Entropy creation

For adiabatic wall, ¢, = ¢5 = 0, assume T' ~ C'

The total rate of entropy creation

: mg 0S . 51
Sa = 0 dadm = 0 T’Txydu (17)

e This is the same as Denton’s conclusion for the total rate of
entropy creation.

e The local rate of entropy creation:

ds 1 1
51 dm T(Txydu dq) # TTg;ydu (18)

e Denton’s local rate of entropy creation is incorrect.



Entropy creation in a Boundary Layer:
Solution validation

A duct, Inlet M=0.2, Rep, = 10°,
k — € model integrating to wall
y; = 1.8, Rey = 3584.5, H =1.34

Figure 3: Velocity vector field of the turbulent bound-
ary layer in the duct near exit, M cestream = 0.2



Entropy creation in a Boundary Layer:
Solution validation

The dissipation coefficient, Cd,

TS,

Cd 3 (19)
Pelle
where ey
: 0 U
Sd — 0 TTxyd—ydy (20>

Computed numerical value: C'd = 0.001463, agree well with
empirical correlation [Schlichting,1966]:

Cd = 0.0056Re;'® = 0.001432 (21)



20 -

15

10 |-

computed
— — — — Lawofthe wall

Figure 4 Computed velocity profile in the inner layer compared
with the law of the wall.
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Figure 5: Computed temperature profile of the turbulent bound-
ary layer compared with Crocco-Busemann solution.
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Figure 6: 'The distribution of entropy creation due to
shear stress work across the boundary layer.
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Figure 72 The distribution of entropy creation across
the boundary layer for individual terms and their
resultant.
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Figure 8: The distribution of entropy creation near the
wall for individual terms and their resultant.
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Figure 9: Heat flux distribution for the duct adiabatic
boundary layer.
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Figure 10: Entropy creation rate computed at different
wall function location.
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Figure 11: Error of the total entropy creation rate com-
puted at different wall function location.
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Mesh for the NACAOQ012 cascade solut

integrating to the wall.

Figure 12
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Figure 14: Static pressure distributions of the cascade
flow solutions using wall functions and integrating
to the wall.
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Figure 15: Total pressure distributions in the wake re-
gion for the cascade flow solutions using wall func-
tions and integrating to the wall.
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Figure 16: €sh in the trailing edge region for the solution

integrating to the wall.



Figure 17: Velocity vector field in the trailing edge re-
gion for the solution integrating to the wall.



gure 18: Mlesh and velocity vector field in the trailing
edge region for the solution using wall functions.



Conclusions:

e For an adiabatic turbulent boundary layer, the entropy cre-
ation within the boundary layer has two sources:

1) Shear stress work
2) Heat Flux gradient

e The entropy creation is fairly uniform across the boundary
layer

e The previous theory that the entropy is mostly created in the
inner layer is incorrect.

e The error to predict entropy creation using wall functions for
turbulent boundary layer is small.

e There is a balance point between the shear stress work and
heat flux gradient located at about y™ = 25 — 30, where the
wall functions will give correct entropy creation results.



