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Background

e Fully coupled fluid-structure model is necessary to capture
the nonlinear flow phenomena and structure coupling for tur-
bomachinery flow induced vibration

e c.¢.: Stall flutter have unsteady flow separation, shock motion,
oscillating tip vortex, blade coupling in a bladed disk (IBR).

e Prescribed blade motion is difficult (inaccurate) if not impos-

sible
Objective

e Achieve high CPU efficiency by using an efficient low diffusion
E-CUSP scheme



Low Diffusion Upwind Schemes

e Roe’s scheme, accurate, low diffusion, CPU intensive due to
matrix operation.

e H-CUSP schemes, e.g. AUSM family schemes, efficient and
accurate, pressure splitting is not fully consistent with charac-
teristic direction.

e E-CUSP scheme, efficient and accurate, consistent with char-
acteristic direction.

e The E-CUSP scheme recently suggested by Zha and Hu is
employed.



CFD Aerodynamic Model

e Reynolds-Averaged Navier-Stokes equations(RANS)
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e Molecular viscosity fi = fi(T') is determined by Sutherland law

e Speed of sound a = /YRT

e Total energy:
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e Turbulent shear stresses and heat flux are calculated
by Baldwin-Lomax model



Time Marching Scheme

Implicit unfactored line Gauss-Seidel iteration, dual time step-
ping
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The E-CUSP Scheme in Moving Mesh System
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For E-CUSP scheme, the eigenvalue matrix is split as the fol-

lowing:
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Zha-Hu E-CUSP Scheme at Moving Grid

For subsonic flow, M < 1:
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Boundary Conditions

e Upstream boundary conditions: All the variables
are specified using freestream condition except the pressure
is extrapolated from interior

e Downstream boundary conditions: All the variables
are extrapolated from interior except the pressure is set
to be its freestream value

e Solid wall boundary conditions: Non-slip condition

Uy = 2$b — Uy, Vo = 2yb — U (32)

and adiabatic and the inviscid normal momentum equation
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Geometric Conservation Law
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Structural model for elastic cylinder:

mi+C,x+ K,x =D
my + Cyy+ Ky =L

C, = C, and K, = K, After normalization:
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Matrix form:
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Structural model for elastic airfoil:

mh + S, 4+ Kph = —L
S.h+ L+ Ky =M

Normalized:
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Fully Coupled Fluid-Structural Interaction Proce-
dure

Initial flow field and structural

solutions, Q", S"
Aerodynamic forces Coa?:
il (“3‘
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E €
p 9 Structural displacement 0 E
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Figure 1: Flow-Structure Interaction Calculation Steps
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e Mesh Deformation Strategy

1) inner zone: moving with the solid object, not deformed, keep
the orthogonality and save CPU time

2) outer zone: moved with inner zone, deformed as a spring
system, far field boundary stationary
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Vortex-Induced Oscillating Cylinder

Re=500, M=0.2

Figure 2: Sketch of the elastically mounted cylinder
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Figure 3: Mesh around the cylinder near the solid surface
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Validation of Stationary cylinder vortex shedding
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Figure 4: Time history of the lift and drag of the stationary cylinder due to vortex

shedding

Table 1: Results of Mesh Refinement Study and comparison with the experiments

‘ Mesh Dimension H Ste, ‘ Ste, ‘ Ste, . ‘ C ‘ Cy
120x 80 0.4395 | 0.2197 | 0.2197 +1.1810 1.4529+0.1305
200x120 0.4516 | 0.2246 | 0.2246 +1.2267 1.4840+0.1450
(Roshko 1954) 0.2075
(Goldstein 1938) 0.2066
384x96 (Alonso 1995) || 0.46735 | 0.23313 1.14946(Chymaz) | 1.31523(Claavg)
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Flow induced vibration

Figure 5: Vorticity contours with small cylinder structural oscillation amplitude,
s = 12.7322, ¢ = 0.03166,
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Figure 6: The trajectory of the Time histories of the lift and drag coefficients of the
oscillating cylinder, ps = 1.2732, ¢ = 0.03166
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Figure 7: Comparison of the computed amplitude with Griffin’s experimental data
for the elastically mounted cylinder.
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Figure 8: Convergence histories for both CFD and structural solvers within one
physical time step
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Steady State Flow of Transonic RAE 2822 Airfoil

Re=6.5 x 10°, M,,=0.729, AoA=2.31°.
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Figure 9: Pressure coefficient comparison

Table 2: Aerodynamic coefficients and y+ for RAE 2822 Airfoil

‘ Mesh Dimension H Cy ‘ G ‘ Cm ‘ Y+ ‘
128 x50 0.01482 | 0.73991 | 0.09914 | 0.0833 - 2.3864
25655 0.01455 | 0.73729 | 0.09840 | 0.1318 - 2.4016
512x95 0.01426 | 0.74791 | 0.09994 | 0.2309 - 2.0228

Prananta et al. | 0.01500 | 0.74800 | 0.09800
Experiment 0.01270 | 0.74300 | 0.09500
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Forced Pitching NACA 64A010 Airfoil
Re=1.256 x 107, M,,=0.8
a(t) = ay + a,sin(wt) (46)

a, =0, a, =1.01°
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Figure 10: Comparison of computed lift coefficient with Davis’ experimental data for
the forced pitching airfoil.
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Figure 11: Comparison of computed moment coefficient with Davis’ experimental
data for the forced pitching airfoil.
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Flutter Prediction for NACA 64A010 Airfoil

Re = 1.256 x 107, My, = 0.75 — 0.95, a = —2.0, 2, = 1.8,
“0 = 1,72 =348, i = 60.

Figure 12: Sketch of the elastically mounted airfoil
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Figure 13: O-type mesh around the NACA 64A010 airfoil
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Figure 14: Time histories of plunging and pitching displacements for M., = 0.825
and V* = 0.55 - Damped response.
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Figure 15: Time histories of plunging and pitching displacements for M., = 0.825
and V* = 0.615 - Neutrally stable response.
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Figure 16: Time histories of plunging and pitching displacements for M., = 0.825
and V* = 0.70 - Diverging response.
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Conclusion

e The efficient high resolution E-CUSP upwind scheme of Zha
and Hu is extended to moving grid with fully coupled fluid-
structural interaction.

e For an elastically mounted cylinder, computed cross-flow dis-
placement of the cylinder agree well with experiment

e For the forced pitching NACA 64A010 airfoil, the computed
lift oscillation agrees very well with the experiment The com-
puted moment oscillation has large deviation from the experi-
ment

e For the elastically mounted airfoil, the predicted flutter bound-
ary agree well with the results of other researchers
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