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Objective:

• Develop an E-CUSP upwind scheme with high accuracy and

efficiency

Background:

• Aircraft and engine design need CFD solver with high effi-

ciency and accuracy

• Roe scheme popular for transonic flows with high resolution

for discontinuities, matrix dissipation CPU intensive

• More efficient schemes with scalar dissipation:

H-CUSP schemes: Liou’s AUSM family scheme, Edwards’ LDFSS

schemes, Van Leer-Hänel scheme, Jameson’s H-CUSP schemes

E-CUSP: Jameson’s H-CUSP schemes, Zha-Hu scheme(2004)

Flux Vector schemes: Steger-Warming scheme, Van Leer scheme;

very diffusive



• H-CUSP schemes (e.g. AUSM family schemes) have high

accuracy, but not fully consistent with characteristics

• E-CUSP scheme is consistent with characteristics. Zha-Hu

E-CUSP scheme has high efficiency and low diffusion, able to

capture exact contact surface. Non-smooth temperature field

may occur.

• This paper is to remedy the Zha-Hu E-CUSP scheme to re-

move temperature oscillation.



Governing Equations

Quasi-1D Euler equations

∂tU + ∂xE−H = 0 (1)
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Explicit finite volume method
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Characteristics

Jacobian matrix
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Flux Splitting

F = TΛT−1Q (6)
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Fc has eigenvalues (u, u, u), convective term, upwind

Fp has eigenvalues (−a, 0, a), acoustic wave (pressure) term,

upwind and downwind.

This splitting naturally leads to E-CUSP.



H-CUSP
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where H is the total enthalpy

H =
ρe + p

ρ
(11)

F′
c has eigenvalues (u, u, γu), upwind

F′
p has eigenvalues (0, 0,−(γ − 1)u), downwind



Zha-Hu E-CUSP Scheme

For |u| ≤ a,

F1
2

=
1

2
[(ρu)1

2

(qc
L + qc

R)− |ρu|1
2

(qc
R − qc

L)]

+















0

P+p
1
2
p(u + a1

2

)















L

+















0

P−p
1
2
p(u− a1

2

)















R

(12)

For u > a, F1
2

= FL; For u < −a, F1
2

= FR

Interface mass flux is introduced based on Wada-Liou AUSMD

scheme:
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Zha-Hu E-CUSP Scheme, continued

Interface speed of sound
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Pressure splitting in momentum eq.
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The Modified Scheme to Remove Temperature Os-

cillation

For energy equation:

αL =
2(ht/ρ)L

(ht/ρ)L + (ht/ρ)R
, αR =

2(ht/ρ)R
(ht/ρ)L + (ht/ρ)R

(20)

The total enthalpy:

ht = e +
p

ρ
(21)

Everything else is the same as the original Zha-Hu scheme.



Numerical Dissipation

At stagnation u = 0, the dissipation of the new scheme:
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where

δp = pR − pL (23)

The dissipation of the Roe scheme:
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The dissipation of the new scheme is not greater than that of

the Roe scheme.



The Sod Shock Tube Problem
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Figure 1: Temperature



The Sod Shock Tube Problem
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Figure 2: Velocity



The Sod Shock Tube Problem
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Figure 3: Pressure



Quasi-1D Nozzle, Mach number
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Laminar Flat Plate, M=2.0, Velocity Profile
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Laminar Flat Plate, M=2.0, Temperature Profile
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Laminar Flat Plate, Temperature Comparison of

Different Schemes

Scheme 40× 30 80× 60 160× 80 error

Blasius 1.8000 1.8000 1.8000 0.0

Zha CUSP 1.8061 1.8022 1.8018 0.1%

Zha CUSP2 1.7980 1.7991 1.7988 -0.06%

Roe scheme 1.7990 1.8002 1.7996 -0.02%

Liou AUSM+ 1.7993 1.8000 1.8000 0.0

Van Leer 1.8157 1.8328 1.8333 1.8%

Van Leer-Hänel 1.7766 1.7970 1.7996 -0.02%

Table 1: Computed non-dimensional wall temperature using first order schemes with

the baseline mesh and refined meshes



NASA Transonic Nozzle, Mach Number Contours
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NASA Transonic Nozzle, Zoomed Near Wall Tem-

perature Contours
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Nozzle Isentropic Mach Number Distribution
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Conclusions:

• The modified E-CUSP scheme removes the temperature os-

cillation

• The pressure term in the energy equation dissipation is re-

placed by the total enthalpy.

• The modified E-CUSP scheme is efficient and has low diffusion

• For 1D Sod shock problem, crisp shock profile achieved

• For quasi-1D nozzle, no expansion shock generated at sonic

point.

• For M=2 laminar flat plate, 1st order scheme obtains accurate

velocity and temperature profiles

• For a transonic nozzle, oblique shock captured well, temper-

ature oscillation removed


