AIAA Paper 2005-0091

Implicit Application of Non-Reflective Boundary Conditions for Navier-Stokes Equations in Generalized Coordinates

Xiangying Chen Gecheng Zha Dept. of Mechanical and Aerospace Engineering University of Miami Coral Gables, Florida 33124 xychen@apollo.eng.miami.edu, zha@apollo.eng.miami.edu

Background

- Internal unsteady flows sensitive to reflective waves at boundaries
- NRBC of Giles (1990) applicable for Euler eqs. with uniform far field flow
- NRBC of Poinsot and Lele (1992) developed for viscous flow using LODI in Cartesian Coordinates
- Kim and Lee (2000) extended NRBC of Poinsot and Lele to generalized coordinates, but their derivation has mistakes.

Objectives

- Extend the NRBC of Poinsot and Lele for Navier-Stokes equations to generalized coordinates
- Apply and test the NRBC

Governing Equations: 3D Compressible Navier-Stokes Equations:

$$\frac{\partial \mathbf{Q}'}{\partial t} + \frac{\partial \mathbf{E}'}{\partial \xi} + \frac{\partial \mathbf{F}'}{\partial \eta} + \frac{\partial \mathbf{G}'}{\partial \zeta} = \frac{1}{Re} \left(\frac{\partial \mathbf{E}'_{\mathbf{v}}}{\partial \xi} + \frac{\partial \mathbf{F}'_{\mathbf{v}}}{\partial \eta} + \frac{\partial \mathbf{G}'_{\mathbf{v}}}{\partial \zeta} \right) \qquad (1)$$
$$\mathbf{Q}' = \frac{\mathbf{Q}}{J} \qquad (2)$$

$$\mathbf{E}' = \frac{1}{J} (\xi_x \mathbf{E} + \xi_y \mathbf{F} + \xi_z \mathbf{G})$$
(3)

$$\mathbf{F}' = \frac{1}{J} (\eta_x \mathbf{E} + \eta_y \mathbf{F} + \eta_z \mathbf{G})$$
(4)

$$\mathbf{G}' = \frac{1}{J} (\zeta_x \mathbf{E} + \zeta_y \mathbf{F} + \zeta_z \mathbf{G})$$
(5)

$$\mathbf{E}'_{\mathbf{v}} = \frac{1}{J} (\xi_x \mathbf{E}_{\mathbf{v}} + \xi_y \mathbf{F}_{\mathbf{v}} + \xi_z \mathbf{G}_{\mathbf{v}})$$
(6)

$$\mathbf{F}'_{\mathbf{v}} = \frac{1}{J} (\eta_x \mathbf{E}_{\mathbf{v}} + \eta_y \mathbf{F}_{\mathbf{v}} + \eta_z \mathbf{G}_{\mathbf{v}})$$
(7)

$$\mathbf{G}_{\mathbf{v}}' = \frac{1}{J} (\zeta_x \mathbf{E}_{\mathbf{v}} + \zeta_y \mathbf{F}_{\mathbf{v}} + \zeta_z \mathbf{G}_{\mathbf{v}})$$
(8)

where the variable vector ${\bf Q},$ and inviscid flux vectors ${\bf E},\,{\bf F},$ and ${\bf G}$ are

$$\mathbf{Q} = \begin{pmatrix} \bar{\rho} \\ \bar{\rho}\tilde{u} \\ \bar{\rho}\tilde{v} \\ \bar{\rho}\tilde{w} \\ \bar{\rho}\tilde{e} \end{pmatrix}$$

$$\mathbf{E} = \begin{pmatrix} \bar{\rho}\tilde{u} \\ \bar{\rho}\tilde{u}\tilde{u} + \tilde{p} \\ \bar{\rho}\tilde{u}\tilde{v} \\ \bar{\rho}\tilde{u}\tilde{v} \\ \bar{\rho}\tilde{u}\tilde{w} \\ (\bar{\rho}\tilde{e} + \tilde{p})\tilde{u} \end{pmatrix}, \ \mathbf{F} = \begin{pmatrix} \bar{\rho}\tilde{v} \\ \bar{\rho}\tilde{u}\tilde{v} \\ \bar{\rho}\tilde{v}\tilde{v} + \tilde{p} \\ \bar{\rho}\tilde{w}\tilde{v} \\ (\bar{\rho}\tilde{e} + \tilde{p})\tilde{v} \end{pmatrix}, \ \mathbf{G} = \begin{pmatrix} \bar{\rho}w \\ \bar{\rho}\tilde{u}\tilde{w} \\ \bar{\rho}\tilde{v}\tilde{w} \\ \bar{\rho}\tilde{w}\tilde{w} + \tilde{p} \\ (\bar{\rho}\tilde{e} + \tilde{p})\tilde{v} \end{pmatrix},$$

$$\mathbf{E}_{\mathbf{v}} = \begin{pmatrix} 0 \\ \bar{\tau}_{xx} - \overline{\rho u'' u''} \\ \bar{\tau}_{xy} - \overline{\rho u'' v''} \\ \bar{\tau}_{xz} - \overline{\rho u'' w''} \\ Q_x \end{pmatrix}, \mathbf{F}_{\mathbf{v}} = \begin{pmatrix} 0 \\ \bar{\tau}_{yx} - \overline{\rho v'' v''} \\ \bar{\tau}_{yy} - \overline{\rho v'' v''} \\ \bar{\tau}_{yz} - \overline{\rho v'' w''} \\ Q_y \end{pmatrix}$$
$$\mathbf{G}_{\mathbf{v}} = \begin{pmatrix} 0 \\ \bar{\tau}_{zx} - \overline{\rho w'' u''} \\ \bar{\tau}_{zy} - \overline{\rho w'' v''} \\ \bar{\tau}_{zz} - \overline{\rho w'' w''} \\ Q_z \end{pmatrix}$$

,

$$\bar{\tau}_{ij} = -\frac{2}{3}\tilde{\mu}\frac{\partial\tilde{u}_k}{\partial x_k}\delta_{ij} + \tilde{\mu}(\frac{\partial\tilde{u}_i}{\partial x_j} + \frac{\partial\tilde{u}_j}{\partial x_i})$$
(9)

$$Q_i = \tilde{u}_j (\bar{\tau}_{ij} - \overline{\rho u_i'' u_j''}) - (\bar{q}_i + C_p \overline{\rho T'' u_i''})$$
(10)

$$\bar{q}_i = -\frac{\tilde{\mu}}{(\gamma - 1)Pr} \frac{\partial a^2}{\partial x_i} \tag{11}$$

$$\bar{\rho}\tilde{e} = \frac{\tilde{p}}{(\gamma - 1)} + \frac{1}{2}\bar{\rho}(\tilde{u}^2 + \tilde{v}^2 + \tilde{w}^2) + k$$
(12)

Baldwin-Lomax Turbulence Model used

Time Marching Scheme:

• Implicit Gauss-Seidel Relaxation, Dual Time Stepping

$$\frac{\partial \mathbf{Q}}{\partial t} = \frac{3Q^{n+1} - 4Q^n + Q^{n-1}}{2\Delta t} \tag{13}$$

$$\left[\left(\frac{1}{\Delta \tau} + \frac{1.5}{\Delta t} \right) I - \left(\frac{\partial R}{\partial Q} \right)^{n+1,m} \right] \delta Q^{n+1,m+1} = R^{n+1,m} - \frac{3Q^{n+1,m} - 4Q^n + Q^n}{2\Delta t}$$
(14)

$$R = -\frac{1}{V} \int_{s} \left[(\mathbf{E}' - \frac{1}{Re} \mathbf{E}'_{v}) \mathbf{i} + (\mathbf{F}' - \frac{1}{Re} \mathbf{F}'_{v}) \mathbf{j} + (\mathbf{G}' - \frac{1}{Re} \mathbf{G}'_{v}) \mathbf{k} \right] \cdot d\mathbf{s} \quad (15)$$

Characteristic Form of the Navier-Stokes Equations:

$$\mathbf{M}\frac{\partial \mathbf{q}}{\partial t} + \mathbf{A} \cdot \mathbf{M}\frac{\partial \mathbf{q}}{\partial \xi} + \mathbf{B} \cdot \mathbf{M}\frac{\partial \mathbf{q}}{\partial \eta} + \mathbf{C} \cdot \mathbf{M}\frac{\partial \mathbf{q}}{\partial \zeta} = \mathbf{R}_{\mathbf{v}}$$
(16)

$$\mathbf{A} = \frac{\partial \mathbf{E}'}{\partial \mathbf{Q}'}, \mathbf{B} = \frac{\partial \mathbf{F}'}{\partial \mathbf{Q}'}, \mathbf{C} = \frac{\partial \mathbf{G}'}{\partial \mathbf{Q}'}, \mathbf{M} = \frac{\partial \mathbf{Q}'}{\partial \mathbf{q}}$$
(17)

$$\mathbf{q} = \frac{1}{J} \begin{pmatrix} \rho \\ u \\ v \\ w \\ p \end{pmatrix}$$
(18)

Equation (16) can be further expressed as:

$$\frac{\partial \mathbf{q}}{\partial t} + \mathbf{a} \frac{\partial \mathbf{q}}{\partial \xi} + \mathbf{b} \frac{\partial \mathbf{q}}{\partial \eta} + \mathbf{c} \frac{\partial \mathbf{q}}{\partial \zeta} = \mathbf{M}^{-1} \mathbf{R}_{\mathbf{v}}$$
(19)

$$\mathbf{a} = \mathbf{M}^{-1} \mathbf{A} \mathbf{M}, \mathbf{b} = \mathbf{M}^{-1} \mathbf{B} \mathbf{M}, \mathbf{c} = \mathbf{M}^{-1} \mathbf{C} \mathbf{M}$$
(20)

a, b, c have the same eigenvalues as Jacobian matrix A, B, C.

$$\mathbf{a} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1} \tag{21}$$

$$\mathbf{\Lambda} = \begin{pmatrix} U & 0 & 0 & 0 & 0 \\ 0 & U & 0 & 0 & 0 \\ 0 & 0 & U & 0 & 0 \\ 0 & 0 & 0 & U + C & 0 \\ 0 & 0 & 0 & 0 & U - C \end{pmatrix}$$
(22)

The Navier-Stokes equation, then can be expressed as:

$$\frac{\partial \mathbf{q}}{\partial t} + \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1} \frac{\partial \mathbf{q}}{\partial \xi} + \mathbf{b} \frac{\partial \mathbf{q}}{\partial \eta} + \mathbf{c} \frac{\partial \mathbf{q}}{\partial \zeta} = \mathbf{M}^{-1} \mathbf{R}_{\mathbf{v}}$$
(23)
or

$$\mathbf{P}^{-1}\frac{\partial \mathbf{q}}{\partial t} + \mathbf{\Lambda}\mathbf{P}^{-1}\frac{\partial \mathbf{q}}{\partial \xi} + \mathbf{P}^{-1}\mathbf{b}\frac{\partial \mathbf{q}}{\partial \eta} + \mathbf{P}^{-1}\mathbf{c}\frac{\partial \mathbf{q}}{\partial \zeta} = \mathbf{P}^{-1}\mathbf{M}^{-1}\mathbf{R}_{\mathbf{v}} \quad (24)$$

$\mathbf{P^{-1}}$ can not be absorbed into $\frac{\partial \mathbf{q}}{\partial t}$ and $\frac{\partial \mathbf{q}}{\partial x}$. It is incorrect to express NS eqs. as:

$$\frac{\partial \mathbf{R}}{\partial t} + \mathbf{\Lambda} \frac{\partial \mathbf{R}}{\partial \xi} + = \mathbf{P}^{-1} S_v^* \tag{25}$$

Characteristic form of the Navier-Stokes equations in ξ direction.

$$\mathcal{L} = \Lambda \mathbf{P}^{-1} \frac{\partial \mathbf{q}}{\partial \xi} \tag{26}$$

$$\mathbf{P}^{-1}\frac{\partial \mathbf{q}}{\partial t} + \mathcal{L} + \mathbf{P}^{-1}\mathbf{b}\frac{\partial \mathbf{q}}{\partial \eta} + \mathbf{P}^{-1}\mathbf{c}\frac{\partial \mathbf{q}}{\partial \zeta} = \mathbf{P}^{-1}\mathbf{M}^{-1}\mathbf{R}_{\mathbf{v}} \qquad (27)$$

 \mathcal{L} : the amplitude of the characteristic waves

$$\mathcal{L} = \begin{pmatrix} \mathcal{L}_{1} \\ \mathcal{L}_{2} \\ \mathcal{L}_{3} \\ \mathcal{L}_{4} \\ \mathcal{L}_{5} \end{pmatrix} = \begin{pmatrix} U[\tilde{\xi}_{x}\frac{\partial}{\partial\xi}(\frac{p}{J}) + \tilde{\xi}_{z}\frac{\partial}{\partial\xi}(\frac{v}{J}) - \tilde{\xi}_{y}\frac{\partial}{\partial\xi}(\frac{w}{J}) - \frac{\tilde{\xi}_{x}}{c^{2}}\frac{\partial}{\partial\xi}(\frac{p}{J})] \\ U[\tilde{\xi}_{y}\frac{\partial}{\partial\xi}(\frac{p}{J}) - \tilde{\xi}_{z}\frac{\partial}{\partial\xi}(\frac{u}{J}) + \tilde{\xi}_{x}\frac{\partial}{\partial\xi}(\frac{w}{J}) - \frac{\tilde{\xi}_{y}}{c^{2}}\frac{\partial}{\partial\xi}(\frac{p}{J})] \\ U[\tilde{\xi}_{z}\frac{\partial}{\partial\xi}(\frac{p}{J}) + \tilde{\xi}_{y}\frac{\partial}{\partial\xi}(\frac{u}{J}) - \tilde{\xi}_{x}\frac{\partial}{\partial\xi}(\frac{v}{J}) - \frac{\tilde{\xi}_{z}}{c^{2}}\frac{\partial}{\partial\xi}(\frac{p}{J})] \\ (U+C)[\frac{\tilde{\xi}_{x}}{\sqrt{2}}\frac{\partial}{\partial\xi}(\frac{u}{J}) + \frac{\tilde{\xi}_{y}}{\sqrt{2}}\frac{\partial}{\partial\xi}(\frac{v}{J}) + \frac{\tilde{\xi}_{z}}{\sqrt{2}}\frac{\partial}{\partial\xi}(\frac{w}{J}) + \beta\frac{\partial}{\partial\xi}(\frac{p}{J})] \\ (U-C)[-\frac{\tilde{\xi}_{x}}{\sqrt{2}}\frac{\partial}{\partial\xi}(\frac{u}{J}) - \frac{\tilde{\xi}_{y}}{\sqrt{2}}\frac{\partial}{\partial\xi}(\frac{v}{J}) - \frac{\tilde{\xi}_{z}}{\sqrt{2}}\frac{\partial}{\partial\xi}(\frac{w}{J}) + \beta\frac{\partial}{\partial\xi}(\frac{p}{J})] \\ (28) \end{cases}$$

Express the Characteristic form of the Navier-Stokes equations in conservative variables:

$$\frac{\partial \mathbf{Q}'}{\partial t} + \mathcal{D} + \frac{\partial \mathbf{F}'}{\partial \eta} + \frac{\partial \mathbf{G}'}{\partial \zeta} = \frac{1}{Re} \left(\frac{\partial \mathbf{E}'_{\mathbf{v}}}{\partial \xi} + \frac{\partial \mathbf{F}'_{\mathbf{v}}}{\partial \eta} + \frac{\partial \mathbf{G}'_{\mathbf{v}}}{\partial \zeta} \right)$$
(29)
$$\mathcal{D} = \mathbf{MP}\mathcal{L}$$
(30)

Local One-Dimensional Inviscid (LODI):

$$\frac{\partial \mathbf{Q}'}{\partial t} + \mathcal{D} = 0 \tag{31}$$

Implicit Implementation of the NRBC

$$\left[\left(\frac{1}{\Delta \tau} + \frac{1.5}{\Delta t} \right) I - \left(\frac{\partial R_{bc}}{\partial Q} \right)^{n+1,m} + \left(\frac{\partial \mathcal{D}}{\partial Q} \right)^{n+1,m} \right] \delta Q^{n+1,m+1}$$
$$= R_{bc}^{n+1,m} - \mathcal{D}^{n+1,m} - \frac{3Q^{n+1,m} - 4Q^n + Q^{n-1}}{2\Delta t} \qquad (32)$$

$$R_{bc} = -\frac{1}{V} \int_{s} \left[\left(-\frac{1}{Re} \mathbf{E}'_{v} \right) \mathbf{i} + \left(\mathbf{F}' - \frac{1}{Re} \mathbf{F}'_{v} \right) \mathbf{j} + \left(\mathbf{G}' - \frac{1}{Re} \mathbf{G}'_{v} \right) \mathbf{k} \right] \cdot d\mathbf{s} \quad (33)$$

Supersonic outflow boundary conditions

- All eigenvalues positive
- The complete characteristic N-S eqs (Eq. 29) solved.
- $\bullet \ \mathcal{L}$ evaluated using first or second order upwind differencing.

Subsonic outflow boundary conditions

- Eigenvalue U C negative
- The characteristic N-S eqs (Eq. 29) solved.
- Soft boundary condition

$$\mathcal{L}_5 = \mathcal{K}(p - p_e), \ \mathcal{K} = \sigma |1 - \mathcal{M}^2| / (\sqrt{2}J\rho L)$$
(34)

If $\mathcal{L}_5 = 0$, 'perfect' non-reflective boundary condition.

• Three zero gradient for viscous terms:

Subsonic inflow boundary conditions

- \mathcal{L}_{1-4} enter the domain, \mathcal{L}_5 leave the domain.
- Four conditions are given, the energy eq. solved with \mathcal{L}_5 using one-side differencing.
- \mathcal{L}_1 \mathcal{L}_4 obtained using LODI:

$$\mathcal{L}_1 = -\tilde{\xi}_x \frac{\rho}{\sqrt{2}c} (\mathcal{L}_4 + \mathcal{L}_5), \ \mathcal{L}_2 = -\tilde{\xi}_y \frac{\rho}{\sqrt{2}c} (\mathcal{L}_4 + \mathcal{L}_5), \ \mathcal{L}_3 = -\tilde{\xi}_z \frac{\rho}{\sqrt{2}c} (\mathcal{L}_4 + \mathcal{L}_5), \ \mathcal{L}_4$$
(35)

Adiabatic wall boundary conditions

•
$$u_o = -u_i, v_o = -v_i, w_o = -w_i. \quad \frac{\partial T}{\partial \eta} = 0.$$

- \bullet total energy ρe_o is solved by energy equation
- Cross η boundary

$$\mathcal{L} = \begin{pmatrix} \mathcal{L}_{1} \\ \mathcal{L}_{2} \\ \mathcal{L}_{3} \\ \mathcal{L}_{4} \\ \mathcal{L}_{5} \end{pmatrix} = \begin{pmatrix} V[\tilde{\eta}_{x}\frac{\partial}{\partial\eta}(\frac{p}{J}) + \tilde{\eta}_{z}\frac{\partial}{\partial\eta}(\frac{v}{J}) - \tilde{\eta}_{y}\frac{\partial}{\partial\eta}(\frac{w}{J}) - \frac{\tilde{\eta}_{x}}{c^{2}}\frac{\partial}{\partial\eta}(\frac{p}{J})] \\ V[\tilde{\eta}_{y}\frac{\partial}{\partial\eta}(\frac{p}{J}) - \tilde{\eta}_{z}\frac{\partial}{\partial\eta}(\frac{u}{J}) + \tilde{\eta}_{x}\frac{\partial}{\partial\eta}(\frac{w}{J}) - \frac{\tilde{\eta}_{z}}{c^{2}}\frac{\partial}{\partial\eta}(\frac{p}{J})] \\ V[\tilde{\eta}_{z}\frac{\partial}{\partial\eta}(\frac{p}{J}) + \tilde{\eta}_{y}\frac{\partial}{\partial\eta}(\frac{u}{J}) - \tilde{\eta}_{x}\frac{\partial}{\partial\eta}(\frac{v}{J}) - \frac{\tilde{\eta}_{z}}{c^{2}}\frac{\partial}{\partial\eta}(\frac{p}{J})] \\ (V+C)[\frac{\tilde{\eta}_{x}}{\sqrt{2}}\frac{\partial}{\partial\eta}(\frac{u}{J}) + \frac{\tilde{\eta}_{y}}{\sqrt{2}}\frac{\partial}{\partial\eta}(\frac{v}{J}) + \frac{\tilde{\eta}_{z}}{\sqrt{2}}\frac{\partial}{\partial\eta}(\frac{w}{J}) + \beta\frac{\partial}{\partial\eta}(\frac{p}{J})] \\ (V-C)[-\frac{\tilde{\eta}_{x}}{\sqrt{2}}\frac{\partial}{\partial\eta}(\frac{u}{J}) - \frac{\tilde{\eta}_{y}}{\sqrt{2}}\frac{\partial}{\partial\eta}(\frac{v}{J}) - \frac{\tilde{\eta}_{z}}{\sqrt{2}}\frac{\partial}{\partial\eta}(\frac{w}{J}) + \beta\frac{\partial}{\partial\eta}(\frac{p}{J})] \\ (36) \end{cases}$$

•
$$\mathcal{L}_1$$
 - $\mathcal{L}_3 = 0$, $\mathcal{L}_4 = \mathcal{L}_5$ from LODI

Results: Density, Subsonic Moving Vortex with Imposed p at exit

Results: Density, Subsonic Moving Vortex with NRBC

 $(u^{\tau} - u^{\tau} _{\infty})/u^{\tau} _{\infty}$ of Subsonic Moving Vortex with Imposed p at exit

 $(u^{\tau} - u^{\tau}{}_{\infty})/u^{\tau}{}_{\infty}$ of Subsonic Moving Vortex with NRBC

Steady state *Mach* number contours of the inlet diffuser with NRBC.

Conclusions

• The NRBC of Poinsot and Lele for 3D Navier-Stokes equations are extended to generalized coordinates with detailed formulations

• The NRBC is implemented implicitly and is coupled with the inner domain solver by Gauss-Seidel Iteration

• For a unsteady subsonic vortex propagating flow, the NRBC avoid flow distortion at boundaries caused the BCs specifying pressure.

• For a steady state transonic inlet-diffuser, the NRBC is not essential. The reflective waves are diffused when the solutions are converged.

• For an unsteady transonic inlet-diffuser, the NRBC is essential.

• For the exit BC with imposed pressure, the shock wave is largely oscillated by reflective waves.

• When NRBC is used at exit, the shock oscillation dramatically reduced, the computed time averaged pressure distributions and frequency agree much better with the experiment

Acknowledgment

This work is supported by AFOSR Grant F49620-03-1-0253 monitored by Dr. Fariba Fahroo.