AIAA Paper 2005-1260

High Performance Airfoil Using Co-flow Jet Flow Control: Wind Tunnel Tests and Analysis

Gecheng Zha University of Miami

Bruce F. Carroll University of Florida

Craig D. Paxton Clark A. Conley University of Miami

Adam Wells University of Florida

Overview of Airfoil Flow Control

- Rotating Cylinder at LE and TE
- Circulation Control Airfoil, LE or TE Blowing
- Synthetic Jet, Pulsed Jet
- Closed Loop Feed Back, Actuation and Sensor System
- Multi-Element High Lifting System

 $\delta_{\rm f}=20^{\rm o}$

 $\delta_r = 40^{\circ}$

Figure 4 C_L vs α sweep on a flapped NACA 0015 for $\delta_f = 20^\circ \& 40^\circ$

Synthetic Jet (wygnanski, AIAA Paper 2004-2505)

Objective

- Develop A New Airfoil Flow Control Technology:
- Highly Effective: High Lift, Low Drag, High Stall Margin
- Energy Efficient: Small Penalty to Propulsion System
- Easy Implementation

Co-Flow Jet(CFJ) Airfoil Concept

The Tested CFJ Airfoil Geometry

Baseline NACA0025, CFJ0025-065-192, CFJ0025-131-192,

Path Lines Colored by Mach NumberJul 25, 2004
FLUENT 6.1 (3d, coupled imp, ske)Streamlines released from the injection jet at $AoA=30^{0}$,
CFJ0026-131-192 airfoil

Wind Tunnel Setup

CFJ airfoil showing the injectionbox on suction side to removesideforce translation

Wind Tunnel Test Results

tested lift coefficient for baseline NACA0025 and CFJ0025-065-196 airfoil

Measured drag polar, CFJ0025-065-196 airfoil

CFD,wake Mach number contours

 $D = \int \int \rho U (U_{\infty} - U) dA$

CFD, wake shape

Wind Tunnel Test Results

Flow visualization of attached flow, baseline NACA0025 airfoil, ${\rm AoA} = 10^0$

Wind Tunnel Test Results

Flow visualization of separated flow, baseline NACA0025 airfoil, ${\rm AoA}=\!20^0$

Flow visualization, attached flow, CFJ0025-065-196 airfoil, AoA=43^0

Flow visualization, separated flow, CFJ0025-065-196 airfoil, ${\rm AoA}{=}46^0$

PIV, V/V_{∞} , Streamline, PIV, V/V_{∞} , Streamline, attached, CFJ0025-065-196, AoA attached, baseline, AoA = 43⁰, = 43⁰, Front Rear

PIV, V/V_{∞} , Streamline, $AoA = 46^{\circ}$, Front

PIV, V/V_{∞} , Streamline, separated, CFJ0025-065-196, separated, baseline, $AoA = 46^{\circ}$, Rear

Measured injection momentum coefficient, CFJ0025-065-196 airfoil

CFD, streamlines, Mach contours, CFJ0025-065-196 AoA = 39° .

Measured lift coefficient for baseline NACA0025 and CFJ0025-131-196 airfoil

Measured momentum coefficient, CFJ0025-131-196 airfoil

40

CFJ0025-131-196 no trip -1.24 CFJ0025-131-196 w/trip -1.04

CFJ0025-131-196 w/trip -1.09

CFJ0025-131-196 w/trip - 1.24

0.7 F

0.6

0.5

Measured drag polar of CFJ0025-131-196 airfoil

$$C_{jk} = \frac{\dot{m}_j V_j}{0.5\rho_\infty U_\infty^2 S_{slot}}$$

Measured injection, suction \dot{m} , CFJ0025-131-196 Measured injection, suction \dot{m} , CFJ0025-131-196

Comparison of power required to achieve $C_L = 4.22$ for the two CFJ airfoils

Airfoil	C_L	$\dot{m}~(kg/s)$	\mathbf{PR}	AoA	Power Required
CFJ0025-065-196	4.42	0.051254	1.33	34.7^{0}	1
CFJ0025-131-196	4.42	0.11	1.65	30^{0}	3.9

• Great Potential to Improve CFJ Airfoil Performance

Super-Circulation Airfoil

 C_L =9.7, CFJ11425-065-196, AoA=39⁰, M=0.1, CFD Simulation, Inviscid Limit $C_{Lmax} = 2\pi (1 + t/c)$

CFJ Aircraft Benefit Assessment

• Energy Expenditure

$$Loss = \frac{POWER_{cfj}}{POWER_{compressor}}$$
$$= \overline{\dot{m}_{cfj}} \frac{\eta_{compressor}}{\eta_{cfj}} \frac{(PR_{cfj}^{\frac{\gamma-1}{\gamma}} - 1)}{(PR_{compressor}^{\frac{\gamma-1}{\gamma}} - 1)}$$
(1)

• Loss is small

Thrust

$$F = (\dot{m}_{engine} + \dot{m}_{fuel})V_{nozzle} - \dot{m}_{engine}V_{inlet}$$
$$= \dot{m}_{nozzle}V_{nozzle} - \dot{m}_{engine}V_{\infty}$$
(2)

On Ground

$$F = m_{nozzle} V_{nozzle} \tag{3}$$

Penalty to Thrust $\propto \dot{m}$ Dumped Fuel Consumption Suffer Same Penalty

der Gemännperen Samer Samer Fenang

$$SFC = \dot{m}_{fuel}/F \tag{4}$$

CFJ X-47UM in Cruise (Fiction)

CFJ X-47UM Taking Off in Aircraft Carrier(Fiction)

CFJ Personal Aircraft, (Fiction), adapted form www.flug-revue.rotor.com

Boeing CFJ Sonic Cruiser, (Fiction), adapted form www.vigilanceaero.com

Conclusions

- Wind tests successfully demonstrated the Superior Performance of CFJ Airfoil
- CFJ Airfoil Significantly Increase Lift , Stall Margin, and Reduce Drag
- Low Penalty to Propulsion System
- No Large LE and TE Required, Can be used for Thin and Thick Airfoil
- Can be Used for Low and High Speed Aifcraft
- No moving Parts Needed
- Two CFJ Airfoil Tested in Wind Tunnel, CFJ0025-065-196, CFJ0025-131-196,
- Smaller Injection Size Perform Better for C_{Lmax} , Stall Margin,

Power Consumed

- Larger Injection Size Reduce More Drag
- Jet Mass Limit and Jet Instability Observed in Experiment
- Super-Circulation Airfoil Possible

CFJ Airfoil Promising for:

- Aircraft Required Short Take Off/Land Distance (Aircraft Carrier)
- Personal Aircraft to Have Short Take Off/Land Distance, Compact Wingsize, Small Drag
- Long Range Cruiser to Save Fuel
- Combat Aircraft for Fast Acceleration and High Maneuverability
- Quiet Airplane with Low Noise

• Military Aircraft (UAVs) Need Loitering and Supersonic Dash (suggested by G. Hill, NASA LaRC)

• Increase Supersonic Delta Wing Lift at Subsonic Take off and Landing(suggested by G. Hill, NASA LaRC)

Thank NASA LaRC for Support NASA LaRC Contract NNL04AA39C NRA-03-LaRC-02