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Objective:

� Numerical prediction of the boundary layer separation for a
transonic cascade
Background:

� Flow separation is one of the unsteady aerodynamic forcing
sources exciting blade flutter

Motivation:

� Develop a CFD solver to predict the steady and unsteady flow
separation for compressor



Governing Equations

3D Reynolds averaged NS equations:
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shear stresses are expressed as,
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Numerical Algorithms

� Implicit Gauss-Seidel Relaxation Time Marching

� Roe and Van Leer Schemes for inviscid fluxes, 3rd Order
MUSCL-type differencing

� 2nd order central differencing for viscous terms

� Baldwin-Lomax Turbulence model
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Figure 1: Computed velocity profile comparison with the law of the wall



Figure 2: The transonic inlet-diffuser mesh
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Figure 3: Mach number contours of the transonic inlet-diffuser
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Figure 4: Upper wall pressure distribution of the transonic inlet-diffuser



inlet flow

Figure 5: NASA transonic flutter cascade tunnel



Figure 6: Cascade 3D mesh



Figure 7: Cascade 3D mesh



Figure 8: Flow pattern of the inlet-diffuser at incidence
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Figure 9: Mid-span static pressure distribution at Mach number 0.5



(a) Ma=0.5 (b) Ma=0.8 (c) Ma=1.18

Figure 10: Mid-span flow pattern under different inlet Mach numbers



(a) Computed flow pattern (b) Experiment visualization

Figure 11: Suction surface flow pattern at Mach number 0.5



(a) Computed flow pattern (b) Experiment visualization

Figure 12: Suction surface flow pattern at Mach number 0.8



(a) Computed flow pattern (b) Experiment visualization

Figure 13: Suction surface flow pattern at Mach number 1.18
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Figure 14: Mid-span static pressure distribution at Mach number 0.5
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Figure 15: Mid-span static pressure distribution at Mach number 0.8
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Figure 16: Experimental shock structure of the NASA transonic cascade at Mach number
1.18



Conclusions:

� NASA GRD flutter compressor cascade calculated at inci-
dence of E�� and

D E�� , inlet M=0.5, 0.8, 1.0

� The surface pressure distribution agrees well with the exper-
iment with no flow separation.

� At high incidence and subsonic, flow separation starts at lead-
ing edge.

� The separation bubble length predicted agree well with the
experiment.

� The computed surface pressure with separation rises more
steeply than that at experiment, overall agreement is reason-
able.

� At supersonic, the flow is attached-separated-reattached. The
separation is due to the shock wave/boundary layer interaction.

� With Baldwin-Lomax turbulence model, the Van Leer scheme
predicts the separation region agreeing better than the Roe scheme.


